五米高考> >高考资讯 >高考新闻 >

奇函数加偶函数是什么函数

时间: 高考新闻

奇函数加偶函数一般情况下是非奇非偶函数。设f(x)为偶函数,g(x)是奇函数令f(x)=f(x)+g(x)F(-x)=f(-x)+g(-x)=f(x)-g(x)≠f(x)+g(x)=F(x)也≠-[f(x)+g(x)]=-F(x)即非奇非偶函数。

奇函数加偶函数的奇偶性

例题1:已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)+g(x)的奇偶性。

解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)+g(x),则h(x)的定义域关于原点对称。

h(–x)=f(–x)+g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)–g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。

举例说明:f(x)=x,g(x)=x的平方,h(x)=x+x的平方,h(–x)=–x+x的平方,可以看出h(x)为非奇非偶函数。

奇函数减偶函数的奇偶性

例题2:已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)-g(x)的奇偶性。

解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)-g(x),则h(x)的定义域关于原点对称。

h(–x)=f(–x)-g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)+g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。

举例说明:f(x)=x,g(x)=x的平方,h(x)=x-x的平方,h(–x)=–x-x的平方,可以看出h(x)为非奇非偶函数。