当前位置:五米高考 >高考复习 >高中数学 >正文

正弦函数的对称轴

2020-03-30

对称轴:关于直线x=(π/2)+kπ,k∈Z对称。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角,而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。

正弦函数的对称轴

正弦函数基本性质

定义域

实数集R,可扩展到复数集C

值域

[-1,1](正弦函数有界性的体现)

最值和零点

①最大值:当x=2kπ+(π/2),k∈Z时,y(max)=1

②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1

零值点:(kπ,0),k∈Z

对称性

1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称

2)中心对称:关于点(kπ,0),k∈Z对称

周期性

最小正周期:2π

奇偶性

奇函数(其图象关于原点对称)

单调性

在[-(π/2)+2kπ,(π/2)+2kπ],k∈Z上是增函数

在[(π/2)+2kπ,(3π/2)+2kπ],k∈Z上是减函数

对称轴和对称中心求法

正弦函数有最基本的公式:y=Asin(wx+ψ),对称轴(wx+ψ)=kπ+½π(k∈z),对称中心(wx+ψ)=kπ+(k∈z),解出x即可。

例子:y=sin(2x-π/3),求对称轴和对称中心

对称轴:2x-π/3=kπ+π/2,x=kπ/2+5π/12

对称中心:2x-π/3=kπ,x=kπ/2+π/6,对称中心为(kπ/2+π/6,0)

点击查看 高中数学 更多内容