x的x次方求导公式
时间:
高中数学
x求的x次方的导可以用换元法。令:y=x^(x)则:y=x^(x)=e^[ln(x^x)]=e^(xlnx),即:y'=(x^x)(lnx+1)。
推导过程
(x^x)'=(x^x)(lnx+1)
求法:令x^x=y
两边取对数:lny=xlnx
两边求导,应用复合函数求导法则:
(1/y)y'=lnx+1
y'=y(lnx+1)
即:y'=(x^x)(lnx+1)
x求的x次方的导可以用换元法。令:y=x^(x)则:y=x^(x)=e^[ln(x^x)]=e^(xlnx),即:y'=(x^x)(lnx+1)。
(x^x)'=(x^x)(lnx+1)
求法:令x^x=y
两边取对数:lny=xlnx
两边求导,应用复合函数求导法则:
(1/y)y'=lnx+1
y'=y(lnx+1)
即:y'=(x^x)(lnx+1)