五米高考> >高考复习 >高中数学 >

ln的运算法则

时间: 高中数学

ln函数的运算法则:ln(MN)=lnM+lnN,ln(M/N)=lnM-lnN,ln(M^n)=nlnM,ln1=0,lne=1,注意,拆开后,M,N需要大于0。没有ln(M+N)=lnM+lnN,和ln(M-N)=lnM-lnN,lnx是e^x的反函数。

ln的运算法则

Ln的运算法则

(1)ln(MN)=lnM+lnN

(2)ln(M/N)=lnM-lnN

(3)ln(M^n)=nlnM

(4)ln1=0

(5)lne=1

注意:拆开后,M,N需要大于0。自然对数以常数e为底数的对数。记作lnN(N>0)。

对数的推导公式

(1)log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)

(2)loga(b)*logb(a)=1

(3)loge(x)=ln(x)

(4)lg(x)=log10(x)

log(a)(b)表示以a为底b的对数。

换底公式拓展:以e为底数和以a为底数的公式代换:logae=1/(lna)

表达方式

1.常用对数:lg(b)=log(10)(b)

2.自然对数:ln(b)=log(e)(b)

通常情况下只取e=2.71828对数函数的定义

对数函数的一般形式为y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称。

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。