五米高考 >高考复习 >高中数学 >

求极限lim的常用公式

时间: 高中数学

求极限lim的常用公式:lim(f(x)+g(x))=limf(x)+limg(x);lim(f(x)-g(x))=limf(x)-limg(x);lim(f(x)*g(x))=limf(x)*limg(x)。

两个重要极限公式

第一个重要极限公式是:lim((sinx)/x)=1(x->0)。

第一个重要极限公式也可定性理解为,当自变量趋于0时,自变量的正弦和自变量趋近于零的程度等效,也就是后续的等价无穷小。而按照等价无穷小的定义,两个无穷小商的极限为1,则互为等价无穷小。

第二个重要极限公式是:lim(1+(1/x))^x=e(x→∞)。

第二个重要极限公式中将1/x换成y。用变量代换法可以产生出另一个公式。这两个公式虽然形式不一样,但本质都相同。都为1加无穷小的无穷大次方近似为1。这两公式中的自变量也可换为单项式多项式,从而由一个公式可以产生无数个公式。

极限的求法

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。