当前位置:五米高考 >高考复习 >高中数学 >正文

外心到三角形什么的距离相等

2020-08-03

三角形的外心是各边中垂线的交点(是外接圆的圆心),所以到各顶点的距离相等,三角形的内心是各角平分线的交点(是内切圆的圆心),所以到各边的距离相等。

外心指三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。指三角形外接圆的圆心,一般叫三角形的外心。三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

证明

注意到外心到三角形的三个顶点距离相等,结合垂直平分线性质,外心定理其实极好证。

计算外心的重心坐标是一件麻烦的事。先计算下列临时变量:

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

设O是三角形ABC的外心则∠AOC=2∠ABC,∠AOB=2∠ACB

与多边形各角都相交的圆叫做多边型的外接圆。

三角形一定有外接圆,其他的图形不一定有外接圆。

三角形的外接圆圆心是三条中垂线的交点,直角三角形的外接圆圆心在斜边的中点上。

三角形外接圆圆心叫外心。

有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)

点击查看 高中数学 更多内容