平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形,面积公式为底乘高。平行四边形的面积公式平行四边形的面积公式...
平时多实行分析推理练习 因为数学的很多题目都是要靠分析和推理的,那不妨试试自己推理,具体来看一下!高中数学怎么快速提分1...
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。分布函数性质:(1)非负有界性0≤F(X)...
true是1。0为false,1为true。bool表示布尔型变量,也就是逻辑型变量的定义符,以英国数学家、布尔代数的奠...
空集是任何集合的子集,是任何非空集合的真子集。空集不是空集的真子集,因为真子集要求父集中至少有一个元素不在子集中。不含任...
从定义出发,Ax=cx,A为矩阵,c为特征值,x为特征向量。矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种...
性质不同、所属不同。有理数属于实数,有理数包括正整数、0、负整数,又包括正整数和正分数,负整数和负分数。实数包括有理数,...
有加法、减法、数乘、数量积、向量积等法则。向量的加法满足平行四边形法则和三角形法则;向量的加减乘(向量没有除法)运算满足...
是使列向量的线性组合为0的系数。特征值为0说明矩阵的各列线性相关,此时的特征向量的各个分量即为使列向量的线性组合为0的系...
唯一性、有界性、保号性、保不等式性、迫敛性。若数列存在极限,则该极限唯一;若数列存在极限,则该数列一定有界;若数列存在极...
一个特征值只能有一个特征向量。特征值和特征向量都是数学概念,若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩...
1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3...
数系的扩充不仅仅是增加一种新的数,它还涉及数的运算,复数的引入,体现了数系扩充的必要性及现实意义;给出的相关规定体现了数...
通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。这样...
平面的法向量确定平面位置的重要向量,指与平面垂直的非零向量,一个平面的法向量可有无限多个,但单位法向量有且仅有两个。例如...
空集属于有限集。定义:不含任何元素的集合成为空集。表示方法:用符号Φ表示,考虑到空集是实数线(或任意拓扑空间)的子集,空...
函数的概念是在某一个变化过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f...
全体实数是指所有的实数,有理数和无理数统称为实数。实数如果按有理数和无理数分类,则有实数、有理数 、正有理数,、零 、负...
向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC。a+b=(x+x',y+y')。a...
单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。单位向量有无数个。一个非零向量除以它的模,可得所需单...