0或者1。幂等矩阵的特征值只可能是0,1。若A为方阵,且A²=A,则A称为幂等矩阵。例如,某行全为1而其他行全为0的方阵...
不一定,最简单的就是0矩阵,对称不可逆,或者就a11=1,其余元都是0的矩阵对称不可逆。实对称矩阵是正交矩阵,不是所有的...
两个任意大小矩阵间的运算,每个元素逐个与矩阵相乘。矩阵的内积参照向量的内积的定义是两个向量对应分量乘积之和。内积又称数量...
伴随矩阵和转置的含义、性质和求法不同。在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那...
矩阵与其转置的乘积等于其本身。只有对称矩阵,反对称矩阵和正交矩阵满足矩阵的转置乘以矩阵,等于矩阵乘以矩阵的转置。如果矩阵...
lnx²的导数是2/x。令y=lnx²=2lnx,则y′=(2lnx)′=2*(lnx)′=2*1/x=2/x。或者令t...
不一定。全微分存在是偏导连续的必要不充分条件,函数连续是偏导存在的既不充分也不必要条件,函数连续是全微分存在的必要不充分...
2arctanx*1/(1+x²)。导数也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在...
把别的变量都看作常数即可。一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。对某个变量求偏导数。...
当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数...
用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理...
矩阵A是方阵时,有行列式|A|,令|λI-A|=0,解出特征值λ。特征空间就是由所有有着相同特征值的特征向量组成的空间,...
函数f(x)是乘积形式、商的形式、根式、幂的形式、指数形式或幂指函数形式的情况,求导时比较适用对数求导法。原因是取对数可...
二维数组有2个轴。二维数组本质上是以数组作为数组元素的数组,即“数组的数组”,类型说明符数组名[常量表达式][常量表达式...
准对角矩阵是以主对角线为中心的相等大小的分块方阵不全为0阵,其余均为0阵的矩阵。准对角矩阵:准对角矩阵时分块矩阵概念下的...
是。cosx分之一等于secx,sec在三角函数中表示正割,直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用se...
不一定,可能是偶函数,也可能是奇函数,要看具体的题目。令f(x)=x^2,(x0),f(x)在原点没有定义,同时不是偶函...
有非零解的条件是矩阵A的列向量相关(秩小于列数)。非零矩阵,数学术语,非零矩阵中所含元素不全为零,即其为至少有一个元素不...
一样。导数存在和可导没有区别,导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相...
判断两个矩阵相似的方法是:判断特征值是否相等、判断行列式是否相等、判断迹是否相等、判断秩是否相等。两个矩阵相似充要条件是...